Microscopic origins for stabilizing room-temperature ferromagnetism in ultrathin manganite layers.
نویسندگان
چکیده
La(0.7)Sr(0.3)MnO(3) is a conducting ferromagnet at room temperature. Combined with thin SrTiO(3) layers, the resulting heterostructures could be used as highly spin-polarized magnetic-tunnel-junction memories. However, when shrunk to dimensions below an apparent critical thickness, the structures become insulating and ferromagnetic ordering is suppressed. Interface spin and charge modulations are thought to create an interfacial dead layer, thus fundamentally limiting the use of this material in atomic-scale devices. The thickness of this dead layer, and whether it is intrinsic, is still controversial. Here we use atomic-resolution electron spectroscopy to demonstrate that the degradation of the magnetic and transport properties of La(0.7)Sr(0.3)MnO(3)/SrTiO(3) multilayers correlates with atomic intermixing at the interfaces, and the presence of extended two-dimensional cation defects in the La(0.7)Sr(0.3)MnO(3) layers (in contrast to three-dimensional precipitates in thick films). When these extrinsic defects are eliminated, metallic ferromagnetism at room temperature can be stabilized in five-unit-cell-thick manganite layers in superlattices, placing the upper limit for any intrinsic dead layer at two unit cells per interface.
منابع مشابه
Magnetic Tunnel Junctions With Co:TiO Magnetic Semiconductor Electrodes
Spin-polarized tunneling is investigated in magnetic tunnel junctions containing an ultrathin interfacial layer of Co:TiO magnetic semiconductor. The Co:TiO layers (0 to 1 nm thick) are inserted at the SrTiO Co interface in La Sr MnO SrTiO Co tunnel junctions. For all junctions we find a negative tunnel magnetoresistance, which decreases upon the insertion of Co:TiO , while the junction resista...
متن کاملDefect-related ferromagnetism in ultrathin metal-free g-C3N4 nanosheets.
Ultrathin metal-free g-C3N4 nanosheets with intrinsic room temperature ferromagnetism were synthesized by heating urea in an airtight container at different temperatures. Results indicate that the samples' saturation magnetization increases with the carbon defect concentration, revealing its carbon defect related ferromagnetism. Moreover, we further confirmed the defect induced ferromagnetic na...
متن کاملLow Temperature Magnetothermodynamics of Pr0.7Ca0.3MnO3
We present a detailed magnetothermal study of Pr0.7Ca0.3MnO3, a perovskite manganite in which an insulator-metal transition can be driven by magnetic field, but also by pressure, visible light, x-rays, or high currents. We find that the field-induced transition is associated with a large release of energy which accounts for its strong irreversibility. In the ferromagnetic metallic state, specif...
متن کاملFerromagnetism in ultrathin MoS2 nanosheets: from amorphous to crystalline
Two-dimensional materials have various applications in the next generation nanodevices because of their easy fabrication and particular properties. In this work, we studied the effects of crystalline order on the magnetic properties of ultrathin MoS2 nanosheets. Results indicate that all the fabricated samples show clear room temperature ferromagnetism. The amorphous sample has the larger satur...
متن کاملRoom Temperature Ferromagnetism in Cobalt Doped ZnO Nanoparticles
In this work we report synthesis and magnetic characterization of cobalt doped ZnO nanoparticles (with different percent of doped cobalt oxide). Synthesis of the materials was carried out at room temperature by polyacrylamide-gel method, using zink sulfate and cobalt nitrate as source materials, acrylamide as monomer and N,N-methylene bisacrylamide as a lattice reagent. Characterization of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 26 شماره
صفحات -
تاریخ انتشار 2010